当前位置: 首页 > news >正文

【强化学习论文清单】AAAI-2022 | 人工智能CCF-A类会议(附链接)

在这里插入图片描述

人工智能促进会(AAAI)成立于1979年,前身为美国人工智能协会(American Association for Artificial Intelligence),是一个非营利性的科学协会,致力于促进对思想和智能行为及其在机器中的体现的潜在机制的科学理解。AAAI旨在促进人工智能的研究和负责任的使用。AAAI还旨在增加公众对人工智能的了解,改善人工智能从业者的教学和培训,并为研究计划者和资助方提供关于当前人工智能发展的重要性和潜力以及未来方向的指导。

  • [1]. Backprop-Free Reinforcement Learning with Active Neural Generative Coding.
  • [2]. Multi-Sacle Dynamic Coding Improved Spiking Actor Network for Reinforcement Learning.
  • [3]. CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-Based Autonomous Urban Driving.
  • [4]. Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach.
  • [5]. OAM: An Option-Action Reinforcement Learning Framework for Universal Multi-Intersection Control.
  • [6]. EMVLight: A Decentralized Reinforcement Learning Framework for Efficient Passage of Emergency Vehicles.
  • [7]. DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning.
  • [8]. AlphaHoldem: High-Performance Artificial Intelligence for Heads-Up No-Limit Poker via End-to-End Reinforcement Learning.
  • [9]. Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning.
  • [10]. Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint.
  • [11]. Enforcement Heuristics for Argumentation with Deep Reinforcement Learning.
  • [12]. Programmatic Modeling and Generation of Real-Time Strategic Soccer Environments for Reinforcement Learning.
  • [13]. Learning by Competition of Self-Interested Reinforcement Learning Agents.
  • [14]. Reinforcement Learning with Stochastic Reward Machines.
  • [15]. Reinforcement Learning Based Dynamic Model Combination for Time Series Forecasting.
  • [16]. Theoretical Guarantees of Fictitious Discount Algorithms for Episodic Reinforcement Learning and Global Convergence of Policy Gradient Methods.
  • [17]. Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks.
  • [18]. Wasserstein Unsupervised Reinforcement Learning.
  • [19]. Reinforcement Learning of Causal Variables Using Mediation Analysis.
  • [20]. Globally Optimal Hierarchical Reinforcement Learning for Linearly-Solvable Markov Decision Processes.
  • [21]. Creativity of AI: Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning.
  • [22]. Same State, Different Task: Continual Reinforcement Learning without Interference.
  • [23]. Introducing Symmetries to Black Box Meta Reinforcement Learning.
  • [24]. Deep Reinforcement Learning Policies Learn Shared Adversarial Features across MDPs.
  • [25]. Conjugated Discrete Distributions for Distributional Reinforcement Learning.
  • [26]. Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning.
  • [27]. Fast and Data Efficient Reinforcement Learning from Pixels via Non-parametric Value Approximation.
  • [28]. Recursive Reasoning Graph for Multi-Agent Reinforcement Learning.
  • [29]. Exploring Safer Behaviors for Deep Reinforcement Learning.
  • [30]. Constraint Sampling Reinforcement Learning: Incorporating Expertise for Faster Learning.
  • [31]. Unsupervised Reinforcement Learning in Multiple Environments.
  • [32]. Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation.
  • [33]. Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning.
  • [34]. Offline Reinforcement Learning as Anti-exploration.
  • [35]. Regularization Guarantees Generalization in Bayesian Reinforcement Learning through Algorithmic Stability.
  • [36]. Sample-Efficient Reinforcement Learning via Conservative Model-Based Actor-Critic.
  • [37]. Controlling Underestimation Bias in Reinforcement Learning via Quasi-median Operation.
  • [38]. Structure Learning-Based Task Decomposition for Reinforcement Learning in Non-stationary Environments.
  • [39]. Generalizing Reinforcement Learning through Fusing Self-Supervised Learning into Intrinsic Motivation.
  • [40]. Reinforcement Learning Augmented Asymptotically Optimal Index Policy for Finite-Horizon Restless Bandits.
  • [41]. Constraints Penalized Q-learning for Safe Offline Reinforcement Learning.
  • [42]. Q-Ball: Modeling Basketball Games Using Deep Reinforcement Learning.
  • [43]. Natural Black-Box Adversarial Examples against Deep Reinforcement Learning.
  • [44]. SimSR: Simple Distance-Based State Representations for Deep Reinforcement Learning.
  • [45]. State Deviation Correction for Offline Reinforcement Learning.
  • [46]. Multi-Agent Reinforcement Learning with General Utilities via Decentralized Shadow Reward Actor-Critic.
  • [47]. A Multi-Agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning.
  • [48]. Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning.
  • [49]. Stackelberg Actor-Critic: Game-Theoretic Reinforcement Learning Algorithms.
  • [50]. Invariant Action Effect Model for Reinforcement Learning.
  • [51]. Locality Matters: A Scalable Value Decomposition Approach for Cooperative Multi-Agent Reinforcement Learning.
  • [52]. Concentration Network for Reinforcement Learning of Large-Scale Multi-Agent Systems.
  • [53]. A Deeper Understanding of State-Based Critics in Multi-Agent Reinforcement Learning.
  • [54]. Goal Recognition as Reinforcement Learning.
  • [55]. NICE: Robust Scheduling through Reinforcement Learning-Guided Integer Programming.
  • [56]. MAPDP: Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems.
  • [57]. Eye of the Beholder: Improved Relation Generalization for Text-Based Reinforcement Learning Agents.
  • [58]. Text-Based Interactive Recommendation via Offline Reinforcement Learning.
  • [59]. Multi-Agent Reinforcement Learning Controller to Maximize Energy Efficiency for Multi-Generator Industrial Wave Energy Converter.
  • [60]. Bayesian Model-Based Offline Reinforcement Learning for Product Allocation.
  • [61]. Reinforcement Learning for Datacenter Congestion Control.
  • [62]. Creating Interactive Crowds with Reinforcement Learning.
  • [63]. Using Graph-Aware Reinforcement Learning to Identify Winning Strategies in Diplomacy Games (Student Abstract).
  • [64]. Reinforcement Learning Explainability via Model Transforms (Student Abstract).
  • [65]. Using Reinforcement Learning for Operating Educational Campuses Safely during a Pandemic (Student Abstract).
  • [66]. Criticality-Based Advice in Reinforcement Learning (Student Abstract).
  • [67]. VeNAS: Versatile Negotiating Agent Strategy via Deep Reinforcement Learning (Student Abstract).

相关文章:

  • Android11 framework Handler
  • Linux系统漏洞本地提权
  • 【笔试强训】Day1
  • 【项目实战:核酸检测平台】第二章 大卸八块
  • Android App开发实战项目之电子书架的实现(附源码 简单易懂 可直接使用)
  • 2021年全国研究生数学建模竞赛华为杯A题相关矩阵组的低复杂度计算和存储建模求解全过程文档及程序
  • 五、 通信协议
  • C++基础知识
  • 电视剧里的代码真能运行吗?
  • 【蓝桥杯Web】第十四届蓝桥杯(Web 应用开发)模拟赛 2 期 | 精品题解
  • VisualDrag低代码拖拽模板
  • 机器学习模型评价指标
  • wy的leetcode刷题记录_Day45
  • 第一章三层交换应用
  • 【二叉树的顺序结构:堆 堆排序 TopK]
  • Java语法之多态
  • 力扣(LeetCode)23. 合并K个升序链表(C++)
  • Rust引用转换时避免使用变量
  • Allegro如何输出STP文件操作指导
  • Git 备忘单—你应该知道的 50 个 Git 命令